then the spectral radius of B is

p(B) = %[*’-‘“5 (2) e (%)]

The value of @ to be used is. consequently,

2

4

D = —

1+ V1= [pB) \/ [ (
24 (4 —| cos| —

Solving Parabolic Partial Differential Equations

du 5 92U
—IX. ) = ——(X. I
or %20 3.1:( ),

w(0.t) = u(l.t) =0. =0, and

0 <x <[

u(x,0) =

t = 0

fx), 0=x=l



Forward Difference Method

ou ut —u’ O%U/  ay_ UL —2u] +U]
ot o Xt')= At 8x2(x“t )_ - (Ax)°

Dividing the domain into m parts, the discretized form of the heat

(diffusion) equation for internal nodes is,

n+1 n n n
U, —U OLZUHl_ZUi T Uiy i=1.2.....m—1

At (Ax)2

In the above equation n refers to the current time. Rewriting the

equation, we have,

i=1.2.....m—1

n+l 1 20L2At n OLzAt ( n n )
| (AX)Z | (AX)Z



Recalling that,

w(O. 1) =u(l,t) =0, =0, and ux,0)=f(x), O0<x</|

The discretized equation can be written in the matrix form as,

un+1:Aun
where,
n N n n
u :[u1 u, um—1:|
and,
[ (1 —2A) Y D__. 0 -
.ax {1—2;&,.) } N
A= 0. - U A=’ 2
. (AX)
| [J:ococnacaananaaal () ﬁ' {1_2}-.;!_




Forward difference method is called , also, explicit method. Truncation

error associated with this method is of order O(At + (AX)?).

Example
Use steps sizes (a) Ax=0.1 and At=0.0005 and (b) Ax=0.1 and

At = 0.01 to approximate the solution to the heat equation,

SH( / 92 u
5r 1T 50

(x.1) =0, O0<x<1, 0=t

with boundary conditions

u(0.t) =u(l.t)y =0, 0<t
and initial conditions

u(x.0) =sm(mx), 0<x <1



Compare the results at r = 0.5 to the exact solution

N

T sin(mx)

ux.t) =e
Solution
(a) Forward-Difference method gives the results in the third column
of the following table. These results are quite accurate.

(b) Forward-Difference method gives the results in the fifth column

of the following table. These results are worthless.

[llustration
In the case (b) unlike the case (a), numerical errors grow by advancing

In time and the method becomes unstable. So, the stability of the

method must be considered.



1000

50

exact U; U;

X; u(x;, 0.9) k = 0.0003 lu(x;,0.5) = u™| k=001 u(x,0.5) - u)
0.0 0 0 0

0.1 000222241 000228652 6411 x 10~ 8.19876 x 107 8.199 x 107
0.2 0.00422728 0.00434922 1219 % 107 ~1.55719 x 10° 1.557 x 10°
0.3 0.00581836 000393619 1.678 x 10~ 2.13833 x 108 2.138 x 10°
04 (.00683989 0.00703719 1973 x 107 ~2.50642 x 10° 2.506 x 10°
0.5 0.00719188 0.00739934 2075 x 107 262685 x 10° 2627 x 10°
0.6 (.00683989 0.00703719 1.973 x 10~ ~2.49015 x 10° 2490 x 10°
0.7 0.00581836 000398619 1.678 x 10~ 2.11200 x 108 2112 x 10°
0.8 0.00422728 0.00434922 1219 % 107 —1.53086 x 10° 1.531 x 10°
0.9 0.00222241 0.00228652 6511 x 107 8.03604 x 107 8.036 x 107
1.0 0 0 (

Matrix Norms

A matrix norm on the set of all n x n matrices . || - ||. defined on

this set, satisfying for all n x n matrices A and B and all real numbers a:



(i) [[All = 0:
(i) |JA|| = 0, if and only if A i1s O, the matrix with all O entries;
(iii) [laA|l = [c|[|All:
(iv) [[A+ Bl = l|All + 1Bl
(v) AB| = lIAlllIB]].

Theorem

If || - || is a vector norm on R", then

lAz|
|A]l = max
20 ||z

1S 4 matrix norm.

Corollary

For any vector z # 0, matrix A, and any natural norm || - ||.

|Az]] < [IA]l - [Iz]



Theorem
If A is an n x n matrix, then p(A) < |Afl

Proof
suppose A Is an eigenvalue of A with eigenvector x and |[x]| = 1.

Then Ax = Ax and

Al = [A] - [Ix]l = [[ax]| = [[Ax]| < [|A][]Ix]] = [|A]l
Thus
P(A) = max [A| < Al

Stability Considerations

i ) o . .
Suppose that an error e = (EEGJ.EED}, Cees Ef,?}_l) Is made in representing

the mnitial data



u® = (fex1), fF(x). ... J'C(ny.-ra—l))'1r
An errorof Ae” propagates in U® , because
u = A(u(o) +e(°)) =AU + Ae®®
At the nth time step, the error in u™ due to e is A%,

The method is stable when these errors do not grow as n increases,

ie., [A%e@] < [e©@]

Hence. we must have .

1A% < 1



This condition according to the previous theorem requires that,
pA") = (p(A)" = 1

The Forward-Difference method is therefore stable only if,
p(A) =1

The eigenvalues of A can be shown to be .

: 2
L = 1—4A(5in (E)) . foreachi=1.2..... m— 1
2m

So the condition for stability consequently reduces to determining

whether s

—ansin ()
— 51T ﬂ

< ]

p(A) = max

l<i<m—I1




and this simplifies to

: 2
. [T | . ‘ |
0 < Al sin < —., foreachi=1.2..... m — |
2m 2

Stability requires that this inequality condition hold as h — 0, or,

equivalently, as m — 00. The fact that

. C((m—Dr\7?
lim | siIn — |
M—s 0 Im

means that stability will occuronly if 0 < A <

. S0, the relation,

P | =

At
(Ax)

1
o < —
2

expresses the stability condition for forward difference method. So,



this method is conditionally stable. In fact, Al and AX must be chosen

In such a way to fulfill the stability condition.

Backward-Difference Method

Using backward difference formula for time derivative, the heat equation

can be discretized as,

u' —u' 2 u', —2u’ +u’,

1+1

At (Ax)2

This equation can be rewritten as,

i=1.2.....m—1

(1+2k)u?_kuh _;\dui“_lzu?—l i=1.2.....m—1

1+1

where, A = (ocZAt)/(Ax)2



Recalling that,

w(O. 1) =u(l,t) =0, =0, and ux,0)=f(x), O0<x</|

The discretized equation can be written in the matrix form as,

Au" =u"?
where,
n n n n
u :|:u1 u2 um—1:|
and,
_ (]—FE-}&]‘ N | T () i}
—A. A
A: {j 0 }L:OCZ tz
) — (AX)
I () I 0 —2 (1421 |




Having u" , a linear system of equations must be solved to obtain u",
The backward difference method is called, also, the implicit method.
The matrix A i1s positive definite, strictly diagonally dominant and
tridiagonal. So, Crout factorization (for rather small systems) or SOR

method (for large systems) can be used to solve the system.

Stability Considerations

Aun _ un—l '» un :A—lun—l
So, the backward difference method is stable only if, p(A_l) <1.For

the Backward-Difference method. the eigenvalues are

2

T
; =1 —|—4}k|:s~;in (—)] , foreachi=1.,2..... m — |

2m



Since A > 0, sowe have u; > lforalli = 1.2,..., m — 1. Since the

eigenvalues of A~! are the reciprocals of those of A,

p(A~!) <1

So, the backward difference method is unconditionally stable.

Example
Use the Backward-Difference method with AX=0.1and At=0.01

(0 approximate the solution to the heat equation

)
-

ox2

o
3—?(.1:.1’)— (x.1) =0, O=x<1, 0<t

subject to the constraints

w0, 1) =u(l.t) =0, 0<t. ux,0)=smrx, O0<x=<]



Solution
The following table represents the results for the implicit method. As
was observed in the previous example, because of the stability problems

the explicit method was not able to produce accurate results.

At

equ L

X; u> u(x;,0.5) u® — u(x;,0.5)]
0.0 0 0

0.1 0.00289802 0.00222241 6.756 x 10~
0.2 0.00551236 0.00422728 1.285 x 107
0.3 0.00758711 0.00581836 1.769 x 10~
0.4 0.00891918 0.00683989 2.079 x 107
0.5 0.00937818 0.00719188 2.186 x 107
0.6 0.00891918 0.00683989 2.079 x 107
0.7 0.00758711 0.00581836 1.769 x 10~
0.8 0.00551236 0.00422728 1.285 x 107
0.9 0.00289802 0.00222241 6.756 x 10~
1.0 0 0




